Bounded Traveling Wave Solutions of the (3+1)-Dimensional Zakharov- Kuznetsov Equation with Power Law Nonlinearity
نویسندگان
چکیده
منابع مشابه
New Exact traveling wave solutions of the (2+1) dimensional Zakharov-Kuznetsov (ZK) equation
The repeated homogeneous balance method is used to construct new exact traveling wave solutions of the (2+1) dimensional ZakharovKuznetsov (ZK) equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many new exact traveling wave solutions are successfully obtained. This method is straight...
متن کاملExact traveling wave solutions of modified KdV–Zakharov–Kuznetsov equation and viscous Burgers equation
ABSTRACT Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modif...
متن کاملExact Travelling Wave Solutions for a Modified Zakharov–Kuznetsov Equation
The modied Zakharov–Kuznetsov (mZK) equation, ut + uux + uxxx + uxyy = 0, (1) represents an anisotropic two-dimensional generalization of the Korteweg–de Vries equation and can be derived in a magnetized plasma for small amplitude Alfvén waves at a critical angle to the undisturbed magnetic field, and has been studied by many authors because of its importance [1–5]. However, Eq. (1) possesses m...
متن کاملAnalytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملclassification of bounded travelling wave solutions of the generalized zakharov equation
by using bifurcation theory of planar ordinary differential equations all different bounded travelling wave solutions of the generalized zakharov equation are classified in different parametric regions . in each of these parametric regions the exact explicit parametric representation of all solitary , kink (anti kink) and periodic wave solutions as well as their numerical simulation and thei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scholars Journal of Physics, Mathematics and Statistics
سال: 2020
ISSN: 2393-8056,2393-8064
DOI: 10.36347/sjpms.2020.v07i07.004